Using A Perceptron ANN With Genetic Algorithm Trainer To Solve Logical AND

Posted on Updated on

Neural nets (NN)  have always been a “black box” fascination for me until recently when i had my eureka moment. Neural Networks are mainly used for classification and prediction applications include stock market trends, feature recognition and some types of optimization techniques. A NN can be trained in two ways, supervised and unsupervised.

The NN is exposed to a dataset with the training values and the correct outputs to those values. A Training algorithm such as back propagation is used to minimize the error between resulting outputs and the correct outputs.

The NN is allowed to form its own conclusion based on the dataset provided. These types of networks are usually used for classification type problems, a very good example of this it the SOM (Self Organizing Map) network.

That said, if you have not already read my post on Genetic Algorithms (GA) please do so now, since we will be using GA’s as the means of optimizing the required weights for each input of the Perceptron.

Wow you are back already? Ok lets look at a simple NN to see how it works, the NN we will be reviewing is called the Perceptron this particular configuration has only two input neurons since we will be dealing with a binary operation and one output neuron.

Simple Perceptron

i = inputs
w = weights
o = output
b = bias

A bias is also associated with the network, this bias is simply a neuron with a constant multiplied by a weight, this bias is added to the activation function in order for the NN to recognize problems that are not linearly separable. Each input is multiplied by a corresponding weight, the weight is a small value which will be adjusted until the the output neuron is activated. Activation occurs when the activation function Σ(i1*w1+i2*w2)+b is greater than certain threshold. The output of the activation function is then sent to a transfer function which interprets that output as 1 or 0 depending on the inputs supplied to the NN.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s